Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Bauru; s.n; 2017. 99 p. ilus, tab, graf.
Thesis in English | LILACS, BBO | ID: biblio-883780

ABSTRACT

This study aimed to answer the following questions: 1) does whole fluoridated milk protect more against enamel and dentin erosion than fat-free fluoridated milk? 2) does the protective effect of fluoridated milk against erosion follow a dose-response relationship? 3) is the treatment with whole or fat-free fluoridated milk before the first erosive challenge more protective against enamel and dentin erosion? 4) does the fat content of milk change the proteomic profile of the acquired enamel pellicle (AEP)? This study was divided into 2 parts. The first part analyzed in vitro the effect of milk against dental erosion, considering three factors: type of bovine milk (whole/fat-free), presence of different fluoride concentrations (0- 10.0 ppm) and time of application (before/after erosive challenge). Bovine enamel (n=15/group) and root dentin (n=12/group) specimens were submitted to the following treatments: 0.9% NaCl solution (negative control)( after first erosive challenge); whole milk with 0, 2.5, 5.0, 10.0 ppm F; fat-free milk with 0, 2.5, 5.0, 10.0 ppm F; 0.05% NaF solution (positive control) (before or after first erosive challenge). Specimens were submitted to demineralization - remineralization regimes, 4 times/ day, for 5 days. The response variables were enamel and dentin loss, evaluated by profilometry (µm). Data were analyzed using Kruskal­Wallis/Dunn's test (p<0.05). The presence of fluoride, especially at 10 ppm, was the most important factor in reducing dental erosion. The second part detected changes in protein profile of AEP formed in vivo after rinsing with whole milk, fat-free milk or water. Nine subjects with good oral conditions participated. The AEP was formed in the morning, for 120 min, after prophylaxis with pumice. In sequence, the volunteers rinsed with 10 mL of whole milk, fat-free milk or deionized water for 30 s, following a blind, crossover protocol. After 60 min, the AEP was collected with filter paper soaked in 3% citric acid and processed for analysis by liquid chromatography-electrospray ionization tandem mass spectrometry (LCESI- MS/MS). The obtained MS/MS spectra were searched against human protein database (SWISS­PROT). The proteomic data related to protein quantification were analyzed using the PLGS software. A total of 260 proteins were successfully identified in the AEP samples collected in all groups. Forty-nine were common to the 3 groups, while 72, 62 and 49 were specific for groups treated with whole milk, fat-free milk and water, respectively. Some were typical components of the AEP, such as Cystatin-B, Lysozyme C, Histatin-1, Statherin and Lactotransferrin. Other proteins are not commonly described as part of the AEP but could act in the defense of the organism against pathogens. Distinct proteomic profiles were found in the AEP after rinsing with whole or fat-free milk, which could have an impact in bacterial adhesion and tooth dissolution. The use of fat-free milk could favorably modulate the adhesion of bacteria in the AEP and the biofilm formation in comparison to whole milk.(AU)


Este estudo objetivou responder as seguintes questões: 1) o leite integral fluoretado protege mais contra a erosão do esmalte e dentina do que o leite fluoretado desnatado? 2) o efeito protetor do leite fluoretado segue um padrão dose-resposta? 3) o tratamento com leite integral ou leite desnatado fluoretado antes do primeiro desafio erosivo protege mais contra a erosão do esmalte e dentina? 4) o leite contendo gordura altera o perfil proteico da película adquirida do esmalte (PAE)? O estudo foi dividido em 2 partes. Na primeira parte foi realizado um estudo in vitro, considerando três fatores: tipo de leite bovino (integral/ desnatado), diferentes concentrações de fluoreto e tempo de aplicação (antes/após desafio erosivo). Os espécimes de esmalte bovino (n=15 /grupo) e dentina radicular (n=12 /grupo) foram submetidos aos seguintes tratamentos: solução de NaCl a 0,9% (controle negativo)(após o desafio erosivo); Leite integral com 0, 2,5, 5,0, 10,0 ppm F Leite desnatado com 0, 2,5, 5,0, 10,0 ppm F 0,05% de solução de NaF (controle positivo) (antes ou após o primeiro desafio erosivo). Os espécimes foram submetidos a regimes de desmineralização e remineralização, 4 vezes/dia, durante 5 dias. As variáveis de resposta foram perda de esmalte e dentina, avaliadas por perfilometria (µm). Os dados foram analisados usando o teste de Kruskal-Wallis / Dunn (p <0,05). A presença de fluoreto, especialmente na concentração de 10 ppm, demonstrou ser o fator mais importante na redução da erosão dentária. A parte II do estudo detectou alterações no perfil proteico da PAE formada in vivo após bochecho com leite integral, leite desnatado ou água. Nove indivíduos com boas condições de saúde bucal participaram. A PAE foi formada pela manhã, durante 120 minutos, após profilaxia com pedra-pomes. Em seguida, os voluntários bochecharam com 10 mL de leite integral, leite desnatado ou água deionizada durante 30 s, seguindo um protocolo cego e cruzado. Após 60 min, a película foi coletada com papel de filtro embebido em ácido cítrico a 3% e processada para análise por cromatografia líquida acoplada à espectrometria de massas com ionização por eletrospray (LC-ESI-MS / MS). Os espectros MS/MS obtidos foram confrontados com bases de dados de proteínas humanas (SWISSPROT). Os dados proteômicos relacionados à quantificação de proteínas foram analisados usando o software PLGS. Um total de 260 proteínas foi identificado nas amostras de PAE coletadas em todos os grupos. Quarenta e nove eram comuns aos 3 grupos, enquanto 72, 62 e 49 eram específicas para grupos tratados com leite integral, leite desnatado e água, respectivamente. Algumas proteínas encontradas são típicas da PAE, como Cistatina-B, Lisozima C, Histatina-1, Estaterina e Lactotransferrina. Outras proteínas não são comumente descritas como parte da PAE, mas podem atuar na defesa do organismo contra patógenos. Perfis proteômicos distintos foram encontrados na PAE após o bochecho com leite integral ou desnatado, o que poderia ter um impacto na adesão bacteriana e na dissolução dentária. O uso de leite desnatado pode modular favoravelmente a adesão de bactérias na PAE e a formação do biofilme em comparação com o leite integral.(AU)


Subject(s)
Humans , Animals , Cattle , Cariostatic Agents/chemistry , Fluorides/chemistry , Milk/chemistry , Protective Agents/chemistry , Tooth Demineralization/prevention & control , Dental Enamel/drug effects , Dentin/drug effects , Proteins/analysis , Proteomics , Reproducibility of Results , Time Factors
2.
São José dos Campos; s.n; 2016. 120 p. ^cil.120, tab. , graf..
Thesis in Portuguese | LILACS, BBO | ID: biblio-847846

ABSTRACT

A erosão dental é um processo multifatorial que envolve a desmineralização do esmalte/dentina pela ação química de ácidos extrínsecos ou intrínsecos. A película adquirida é um filme, livre de bactérias, que cobre os dentes e atua como barreira de difusão ou membrana permeável seletiva, prevenindo o contato direto de ácidos com a superfície dos dentes. Os dentifrícios, normalmente usados no controle do biofilme bucal, possuem agentes tensoativos, que podem influenciar na adsorção de proteínas salivares, e atuar diretamente na formação da película adquirida e na liberação de fluoretos para o meio bucal. Assim, verificou-se a ação destes agentes na formação e proteção da película adquirida, sua interação com fluoreto de sódio (NaF) no esmalte, e consequentemente sua interferência na proteção contra a erosão dental. Foram testados três tensoativos (Lauril Sulfato de Sódio - LSS, Tween 20 ­ T20 e Cocoamidopropil Betaína - CAPB), em duas concentrações (1,0% e 1,5%). A água foi utilizada como controle negativo. Amostras de esmalte bovino foram submetidas a um modelo de des/remineralização com ácido cítrico durante 5 dias, imersão em saliva humana para formação de película adquirida e em soluções com os tensoativos testados, associados ou não ao NaF (275 ppm). A solução de NaF foi utilizada como controle positivo. A análise da energia de superfície do esmalte foi determinada por goniometria e a formação de película adquirida quantificada por espectroscopia (FTIR). A erosão inicial foi determinada por microdureza no primeiro dia (mensurada após o primeiro ácido, após o tratamento e após o segundo ácido) e a perda de estrutura de esmalte foi definida por perfilometria ao final de cinco dias de ciclo. Ainda, foi quantificado o flúor solúvel em KOH adsorvido na superfície do esmalte com eletrodo específico. Os resultados de goniometria mostraram que apenas o LSS e o CAPB em ambas concentrações diminuíram o ângulo de contato entre a água e o esmalte. Quanto à quantificação da formação de película, não foi possível verificar diferença significante entre os grupos testados. Com relação à erosão, os dados de dureza mostraram que os tensoativos, independente da concentração, não interferiram no reendurecimento do esmalte, porém o LSS a 1% e 1,5% interferiu no potencial de proteção do NaF, e o T20 a 1% e 1,5% e o CAPB a 1,5% protegeram o esmalte, porém não foram superiores ao efeito do NaF. Já a análise perfilometria mostrou que o T20 a 1% resultou em menores valores de perda que a 1,5%, e ainda que o CAPB 1% e 1,5% foi capaz de proteger comparado ao controle negativo, no entanto nenhum agente associado ao NaF protegeu mais do que o controle positivo. Os dados da concentração de flúor KOH-solúvel indicaram que os tensoativos reduziram a adsorção do CaF2 ao esmalte. Conclui-se que os tensoativos testados reduziram o ângulo de contato da água com o esmalte (exceção do T20). O LSS reduziu o potencial protetor do NaF e da película na erosão inicial e nenhum agente testado interferiu na capacidade protetora do NaF contra a progressão do desgaste erosivo(AU)


Dental erosion can be defined as a multifactorial process that induces tooth dissolution by intrinsic or extrinsic acids. Acquired pellicle is a film, free from bacteria, that covers all tooth tissues, and acts as a selective membrane that prevents direct contact of the acids with enamel/dentin surface. Dentifrices, frequently used in the biofilm control, have some constituents, such as surfactant agents, which influence on the adsorption of salivary proteins, and may directly affect the formation of salivary pellicle and the fluoride release on oral environment. Thus, it was verified the influence of surfactants over the protective effect of the acquired pellicle, and on the interaction of fluoride with enamel. Three different surfactants were tested (Sodium Lauryl Sulphate - SLS, Tween 20 ­ T20 and Cocoamidopropyl Betaine - CAPB), in 2 different concentrations (1.0% and 1.5%). Water was used as negative control. Bovine enamel samples were selected and submitted to an in vitro des/remineralization model with citric acid during 5 days, immersion in human saliva for acquired pellicle formation and immersion in the surfactant solutions, associated or not with sodium fluoride (NaF ­ 275ppm). A NaF solution was used as positive control. The surface wettability was determined by contact angle between water and the enamel using a tensiometer, and the acquired enamel pellicle formation was assessed using a spectrophotometer (FTIR). Initial erosion was defined by microhardness at the first cycle day (measured after the first acid, after treatment and after the second acid), and the structure loss was determined by profilometry. The KOH-soluble fluoride was also quantified after the end of the cycle. The surface energy analysis showed that only SLS and CAPB in both concentrations decreased the contact angle between enamel and water. Regarding the proteins quantification, no differences were found between the groups. Concerning initial erosion, microhardness data showed that all surfactants, in both concentrations, did not interfered with enamel remineralization, but 1% and 1,5% SLS interfered on NaF protective effect. 1% and 1,5% T20 and 1,5%, CAPB despite presenting some protective effect against new acid challenge, did not promote the same protection as NaF. Profilometry results showed that the 1% T20 promoted lower surface loss than at 1.5%, while 1% and 1.5% CAPB protected enamel compared to negative control group. However, no agent associated with NaF showed higher protection than the positive control. KOH-soluble fluoride analysis showed that all surfactants reduced the CaF2 adsorption over enamel surface. It can be concluded that the surfactants tested reduced the enamel contact angle (except for T20). The SLS decreased the protective potential of NaF associated with the pellicle in initial erosion and no agent tested interfered with the protective effect of NaF on enamel erosive wear(AU)


Subject(s)
Humans , Saliva , Fluorine , Surface-Active Agents , Tooth Erosion
SELECTION OF CITATIONS
SEARCH DETAIL